3.473 \(\int \frac {(c+d x^3)^{3/2}}{x (a+b x^3)^2} \, dx\)

Optimal. Leaf size=131 \[ \frac {\sqrt {b c-a d} (a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a^2 b^{3/2}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a^2}+\frac {\sqrt {c+d x^3} (b c-a d)}{3 a b \left (a+b x^3\right )} \]

[Out]

-2/3*c^(3/2)*arctanh((d*x^3+c)^(1/2)/c^(1/2))/a^2+1/3*(a*d+2*b*c)*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(
1/2))*(-a*d+b*c)^(1/2)/a^2/b^(3/2)+1/3*(-a*d+b*c)*(d*x^3+c)^(1/2)/a/b/(b*x^3+a)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {446, 98, 156, 63, 208} \[ \frac {\sqrt {b c-a d} (a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a^2 b^{3/2}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a^2}+\frac {\sqrt {c+d x^3} (b c-a d)}{3 a b \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^3)^(3/2)/(x*(a + b*x^3)^2),x]

[Out]

((b*c - a*d)*Sqrt[c + d*x^3])/(3*a*b*(a + b*x^3)) - (2*c^(3/2)*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a^2) + (Sq
rt[b*c - a*d]*(2*b*c + a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2*b^(3/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (c+d x^3\right )^{3/2}}{x \left (a+b x^3\right )^2} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(c+d x)^{3/2}}{x (a+b x)^2} \, dx,x,x^3\right )\\ &=\frac {(b c-a d) \sqrt {c+d x^3}}{3 a b \left (a+b x^3\right )}+\frac {\operatorname {Subst}\left (\int \frac {b c^2+\frac {1}{2} d (b c+a d) x}{x (a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 a b}\\ &=\frac {(b c-a d) \sqrt {c+d x^3}}{3 a b \left (a+b x^3\right )}+\frac {c^2 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{3 a^2}-\frac {((b c-a d) (2 b c+a d)) \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{6 a^2 b}\\ &=\frac {(b c-a d) \sqrt {c+d x^3}}{3 a b \left (a+b x^3\right )}+\frac {\left (2 c^2\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 a^2 d}-\frac {((b c-a d) (2 b c+a d)) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 a^2 b d}\\ &=\frac {(b c-a d) \sqrt {c+d x^3}}{3 a b \left (a+b x^3\right )}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a^2}+\frac {\sqrt {b c-a d} (2 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a^2 b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 122, normalized size = 0.93 \[ \frac {\frac {\sqrt {b c-a d} (a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{b^{3/2}}+\frac {a \sqrt {c+d x^3} (b c-a d)}{b \left (a+b x^3\right )}-2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^3)^(3/2)/(x*(a + b*x^3)^2),x]

[Out]

((a*(b*c - a*d)*Sqrt[c + d*x^3])/(b*(a + b*x^3)) - 2*c^(3/2)*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]] + (Sqrt[b*c - a*
d]*(2*b*c + a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/b^(3/2))/(3*a^2)

________________________________________________________________________________________

fricas [A]  time = 1.26, size = 686, normalized size = 5.24 \[ \left [\frac {{\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \sqrt {\frac {b c - a d}{b}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} b \sqrt {\frac {b c - a d}{b}}}{b x^{3} + a}\right ) + 2 \, {\left (b^{2} c x^{3} + a b c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) + 2 \, \sqrt {d x^{3} + c} {\left (a b c - a^{2} d\right )}}{6 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}, \frac {{\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \sqrt {-\frac {b c - a d}{b}} \arctan \left (-\frac {\sqrt {d x^{3} + c} b \sqrt {-\frac {b c - a d}{b}}}{b c - a d}\right ) + {\left (b^{2} c x^{3} + a b c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) + \sqrt {d x^{3} + c} {\left (a b c - a^{2} d\right )}}{3 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}, \frac {4 \, {\left (b^{2} c x^{3} + a b c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) + {\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \sqrt {\frac {b c - a d}{b}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} b \sqrt {\frac {b c - a d}{b}}}{b x^{3} + a}\right ) + 2 \, \sqrt {d x^{3} + c} {\left (a b c - a^{2} d\right )}}{6 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}, \frac {{\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \sqrt {-\frac {b c - a d}{b}} \arctan \left (-\frac {\sqrt {d x^{3} + c} b \sqrt {-\frac {b c - a d}{b}}}{b c - a d}\right ) + 2 \, {\left (b^{2} c x^{3} + a b c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) + \sqrt {d x^{3} + c} {\left (a b c - a^{2} d\right )}}{3 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

[1/6*(((2*b^2*c + a*b*d)*x^3 + 2*a*b*c + a^2*d)*sqrt((b*c - a*d)/b)*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3
+ c)*b*sqrt((b*c - a*d)/b))/(b*x^3 + a)) + 2*(b^2*c*x^3 + a*b*c)*sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c
) + 2*c)/x^3) + 2*sqrt(d*x^3 + c)*(a*b*c - a^2*d))/(a^2*b^2*x^3 + a^3*b), 1/3*(((2*b^2*c + a*b*d)*x^3 + 2*a*b*
c + a^2*d)*sqrt(-(b*c - a*d)/b)*arctan(-sqrt(d*x^3 + c)*b*sqrt(-(b*c - a*d)/b)/(b*c - a*d)) + (b^2*c*x^3 + a*b
*c)*sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) + sqrt(d*x^3 + c)*(a*b*c - a^2*d))/(a^2*b^2*x^3
 + a^3*b), 1/6*(4*(b^2*c*x^3 + a*b*c)*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) + ((2*b^2*c + a*b*d)*x^3 + 2
*a*b*c + a^2*d)*sqrt((b*c - a*d)/b)*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*b*sqrt((b*c - a*d)/b))/(b*x
^3 + a)) + 2*sqrt(d*x^3 + c)*(a*b*c - a^2*d))/(a^2*b^2*x^3 + a^3*b), 1/3*(((2*b^2*c + a*b*d)*x^3 + 2*a*b*c + a
^2*d)*sqrt(-(b*c - a*d)/b)*arctan(-sqrt(d*x^3 + c)*b*sqrt(-(b*c - a*d)/b)/(b*c - a*d)) + 2*(b^2*c*x^3 + a*b*c)
*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) + sqrt(d*x^3 + c)*(a*b*c - a^2*d))/(a^2*b^2*x^3 + a^3*b)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 155, normalized size = 1.18 \[ \frac {2 \, c^{2} \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{3 \, a^{2} \sqrt {-c}} - \frac {{\left (2 \, b^{2} c^{2} - a b c d - a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{3 \, \sqrt {-b^{2} c + a b d} a^{2} b} + \frac {\sqrt {d x^{3} + c} b c d - \sqrt {d x^{3} + c} a d^{2}}{3 \, {\left ({\left (d x^{3} + c\right )} b - b c + a d\right )} a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(b*x^3+a)^2,x, algorithm="giac")

[Out]

2/3*c^2*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(a^2*sqrt(-c)) - 1/3*(2*b^2*c^2 - a*b*c*d - a^2*d^2)*arctan(sqrt(d*x^
3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a^2*b) + 1/3*(sqrt(d*x^3 + c)*b*c*d - sqrt(d*x^3 + c)*a*d
^2)/(((d*x^3 + c)*b - b*c + a*d)*a*b)

________________________________________________________________________________________

maple [C]  time = 0.27, size = 1036, normalized size = 7.91 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(3/2)/x/(b*x^3+a)^2,x)

[Out]

-1/a^2*b*(2/9*(d*x^3+c)^(1/2)/b*d*x^3+2/3*(-2/3/b*c*d-(a*d-2*b*c)/b^2*d)*(d*x^3+c)^(1/2)/d+1/3*I/b^2/d^2*2^(1/
2)*sum((-a^2*d^2+2*a*b*c*d-b^2*c^2)/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(
1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(
-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d
^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*Elliptic
Pi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*
(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_a
lpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2))
,_alpha=RootOf(_Z^3*b+a)))-1/a*b*(1/3*(a*d-b*c)*(d*x^3+c)^(1/2)/(b*x^3+a)/b^2+2/3*(d*x^3+c)^(1/2)/b^2*d+1/2*I/
d/b^2*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(
1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d
^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*
_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c
*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*
_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/
2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a)))+1
/a^2*(2/9*(d*x^3+c)^(1/2)*d*x^3+8/9*(d*x^3+c)^(1/2)*c-2/3*c^(3/2)*arctanh((d*x^3+c)^(1/2)/c^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (b x^{3} + a\right )}^{2} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

integrate((d*x^3 + c)^(3/2)/((b*x^3 + a)^2*x), x)

________________________________________________________________________________________

mupad [B]  time = 9.14, size = 214, normalized size = 1.63 \[ \frac {c^{3/2}\,\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}{x^6}\right )}{3\,a^2}+\frac {\sqrt {d\,x^3+c}\,\left (\frac {a\,\left (\frac {b\,d^2}{3\,\left (b^2\,c-a\,b\,d\right )}-\frac {2\,b^2\,c\,d}{3\,a\,\left (b^2\,c-a\,b\,d\right )}\right )}{b}+\frac {b^2\,c^2}{3\,a\,\left (b^2\,c-a\,b\,d\right )}\right )}{b\,x^3+a}+\frac {\ln \left (\frac {2\,b\,c-a\,d+b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,\sqrt {a\,d-b\,c}\,\left (a\,d+2\,b\,c\right )\,1{}\mathrm {i}}{6\,a^2\,b^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^3)^(3/2)/(x*(a + b*x^3)^2),x)

[Out]

(c^(3/2)*log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2)))/x^6))/(3*a^2) + ((c + d*x^3)^(1/2
)*((a*((b*d^2)/(3*(b^2*c - a*b*d)) - (2*b^2*c*d)/(3*a*(b^2*c - a*b*d))))/b + (b^2*c^2)/(3*a*(b^2*c - a*b*d))))
/(a + b*x^3) + (log((2*b*c - a*d + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i + b*d*x^3)/(a + b*x^3))*(a*d
 - b*c)^(1/2)*(a*d + 2*b*c)*1i)/(6*a^2*b^(3/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(3/2)/x/(b*x**3+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________